Mit Elfteln rechnen

Letzte Woche hatte ich folgende Frage gestellt: Punkt Mitternacht stehen großer und kleiner Zeiger genau übereinander. Wie viel Zeit vergeht, bis das wieder der Fall ist?

Uhr 2 quer

Offensichtlich vergeht mehr als eine Stunde, denn erst kurz nach 1.00 Uhr überrundet der große den kleinen Zeiger. Man könnte die Aufgabe mit einem Gleichungssystem lösen, in dem die Zeit t die Unbekannte ist. Wir kennen die Position beider Zeiger um 0.00 Uhr – sie stehen beide auf der 12. Kurz nach 1.00 Uhr treffen sie sich wieder. Der große Zeiger hat dann exakt 360 Grad mehr zurückgelegt als der kleine Zeiger. Also gilt

vg * t – 360 Grad = vk * t

(Wobei vg und vt die Winkelgeschwindigkeit von großem bzw. kleinem Zeiger sind. vg = 360 Grad/Stunde, vk = 30 Grad/Stunde)

Diese Gleichung löst man nach t auf – das ist die Standardlösung.

Schöner finde ich jedoch die Folgende: Um 0.00 Uhr und um 12.00 Uhr stehen die Zeiger exakt übereinander. Zwischen 0.00 und 12.00 Uhr gibt es zehn Überholmanöver. Diese teilen die zwölf Stunden in elf gleich lange Zwischenräume ein, denn die Zeiger bewegen sich mit konstanter Geschwindigkeit. Der Abstand zwischen zwei Begegnungen ist deshalb 12/11 Stunden. Eine elftel Stunde entspricht etwa 5 Minuten und 27 Sekunden. Beim ersten Wiedertreffen der Zeiger nach Mitternacht ist es demnach 1:05:27 Uhr.

Noch ein Uhrenrätsel

Mit der Frage nach dem Winkel zwischen großem und kleinem Zeiger um 15.10 Uhr habe ich letzte Woche so manchen aufs Glatteis geführt. Hier kommt noch ein Uhrenrätsel – und das ist noch eine ganze Ecke schwieriger, wie ich finde.

Uhr quer

Punkt Mitternacht stehen großer und kleiner Zeiger genau übereinander. Wie viel Zeit vergeht, bis das wieder der Fall ist? Anders formuliert: Wie spät ist es beim nächsten Rendezvous der Zeiger?

Lösungen bitte an holger.dambeck AT googlemail.com – diesmal geht es nicht um ein Buch, sondern nur um Ruhm und Ehre.

Es sind 35 Grad

Die Lösung des gestrigen Uhrenrätsels war wohl doch nicht ganz so leicht. Ich hatte gefragt, in welchem Winkel die Zeiger einer Uhr um 15.10 Uhr zueinander stehen. In der ersten E-Mail, die ich bekam, stand 30 Grad. Und in der darauf folgenden auch. Leider stimmt das aber nicht.

Der Winkel ist ein Stückchen größer. Der große Zeiger steht um 15.10 Uhr auf der 2 des Ziffernblatts. Der Winkel bis zur 3 ist genau 30 Grad (=1/12 von 360 Grad). Doch der kleine Zeiger befindet sich um 15.10 Uhr nicht mehr genau über der 3. Er hat sich vielmehr in den zehn Minuten seit 15.00 Uhr ein kleines Stück weiterbewegt.

Aber um wie viel Grad? In 12 Stunden überstreicht der kleine Zeiger 360 Grad, also in einer Stunde 30 Grad. 10 Minuten sind ein Sechstel einer Stunde. In dieser Zeit bewegt sich der Zeiger um ein Sechstel von 30 Grad = 5 Grad. Der gesuchte Winkel zwischen den beiden Zeigern beträgt deshalb 35 Grad.

Die schnellste richtige Lösung kam via Twitter – ich nehme Kontakt zu dem Gewinner meines Buchs „Nullen machen Einsen groß“ auf. Nächste Woche folgt ein ziemlich raffiniertes Logikrätsel.

Ein Uhrenrätsel

Ich habe mir vorgenommen, in meinem Blog regelmäßig kleine mathematische Rätsel zu stellen. Sie sollen nicht allzu schwer sein – aber manchmal könnte es auch anspruchsvoll werden wie zuletzt bei der Knobelei mit dem Fahrrad. Mal sehen, ob ich das einmal pro Woche hinbekomme. Beginnen möchte ich mit einer relativ leichten Aufgabe:

Die Zeiger der Uhr zeigen die Zeit 15.10 Uhr an. Wie groß ist der Winkel zwischen großem und kleinem Zeiger in diesem Moment?

Die Lösung gibt es morgen hier in meinem Blog.

Es gibt auch etwas zu gewinnen: Schicken Sie die Lösung an holger.dambeck AT googlemail.com – der schnellste Einsender bekommt ein Exemplar meines 2013 erschienenen Buches „Nullen machen Einsen groß“.

Viel Glück!